Search results for "Binaries: eclipsing"

showing 5 items of 5 documents

A study of the B and Be star population in the field of the LMC open cluster NGC 2004 with VLT-FLAMES

2005

Observations of hot stars belonging to the young cluster LMC-NGC2004 and its surrounding region have been obtained with the VLT-GIRAFFE facilities in MEDUSA mode. 25 Be stars were discovered; the proportion of Be stars compared to B-type stars is found to be of the same order in the LMC and in the Galaxy fields. 23 hot stars were discovered as spectroscopic binaries (SB1 and SB2), 5 of these are found to be eclipsing systems from the MACHO database, with periods of a few days. About 75% of the spectra in our sample are polluted by hydrogen (Halpha and Hgamma), [SII] and [NII] nebular lines. These lines are typical of HII regions. They could be associated with patchy nebulosities with a bi-m…

Be starPopulationFOS: Physical sciencesAstrophysicsAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA01 natural sciencesbinaries: eclipsing [Stars]Spectral lineStars: early-type[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]ISM: nebular lines and bandsMagellanic Clouds [Galaxies]early-type [Stars]Stars: binaries: spectroscopic0103 physical sciencesCluster (physics)education010303 astronomy & astrophysicsStars: binaries: eclipsingPhysicseducation.field_of_study[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsStars: emission-lineAstrophysics (astro-ph)Stars: early-type ; Stars: emission-line Be ; Galaxies: Magellanic Clouds ; Stars: binaries: spectroscopic ; Stars: binaries: eclipsing ; ISM: lines and bandsAstronomy and AstrophysicsBeGalaxies: Magellanic CloudsGalaxyRadial velocityStarsbinaries: spectroscopic [Stars]Space and Planetary Scienceemission-line Be [Stars][SDU]Sciences of the Universe [physics]lines and bands [ISM]:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]Open cluster
researchProduct

Multi-epoch VLTI-PIONIER imaging of the supergiant V766 Cen

2017

Context. The star V766 Cen (=HR 5171A) was originally classified as a yellow hypergiant but lately found to more likely be a 27-36 M red supergiant (RSG). Recent observations indicated a close eclipsing companion in the contact or common-envelope phase. Aims. Here, we aim at imaging observations of V766 Cen to confirm the presence of the close companion. Methods. We used near-infrared H-band aperture synthesis imaging at three epochs in 2014, 2016, and 2017, employing the PIONIER instrument at the Very Large Telescope Interferometer (VLTI). Results. The visibility data indicate a mean Rosseland angular diameter of 4.1 ± 0.8 mas, corresponding to a radius of 1575 ± 400 R. The data show an ex…

Stars: imagingAperture synthesisBinaries: eclipsingFOS: Physical sciencesAstrophysics01 natural sciences010309 opticsCommon envelopeBinaries: closeAngular diameter0103 physical sciencesmassive [Stars]Red supergiantStars: massiveYellow hypergiant010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsVery Large Telescopeeclipsing [Binaries]Astronomy and AstrophysicsRadiusAstrophysics - Solar and Stellar AstrophysicsSupergiantsSpace and Planetary Scienceimaging [Stars]Techniques: interferometricinterferometric [Techniques]Supergiantclose [Binaries]Astronomy & Astrophysics
researchProduct

Chandra study of the eclipsing M dwarf binary, YY Gem

2012

The eclipsing M dwarf binary system, YY Gem, was observed using Chandra covering 140 ks (2Prot) in total, split into two even exposures separated by 0.76 d (0.94 Prot). The system was extremely active: three energetic flares were observed over the course of these observations. The flaring and non-flaring states of the system are analysed in this paper. The activity level increased between the first and second observations even during the quiescent (non-flaring) phases. An analysis of the dynamics of the X-ray-emitting plasma suggests that both components are significantly active. Contemporaneous Hα spectra also suggest that both components show similar levels of activity. The primary star i…

techniques: spectroscopic binaries: eclipsing stars: coronae stars: flare stars: magnetic field X-rays: starsspectroscopic binaries: eclipsing stars: coronae stars: flare stars: magnetic field X-rays: stars [techniques]Settore FIS/05 - Astronomia E Astrofisica
researchProduct

A possible solution of the puzzling variation of the orbital period of MXB 1659-298

2017

MXB 1659-298 is a transient neutron star Low-Mass X-ray binary system that shows eclipses with a periodicity of 7.1 hr. The source went to outburst in August 2015 after 14 years of quiescence. We investigate the orbital properties of this source with a baseline of 40 years obtained combining the eight eclipse arrival times present in literature with 51 eclipse arrival times collected during the last two outbursts. A quadratic ephemeris does not fit the delays associated with the eclipse arrival times and the addition of a sinusoidal term with a period of $2.31 \pm 0.02$ yr is required. We infer a binary orbital period of $P=7.1161099(3)$ hr and an orbital period derivative of $\dot{P}=-8.5(…

Star (game theory)FOS: Physical sciencesX-rays: starsAstrophysicsEphemeris01 natural sciencesJovianstars: neutronSettore FIS/05 - Astronomia E Astrofisicastars: individual: MXB 1659-2980103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsBinary system010303 astronomy & astrophysicsEclipsePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsbinaries: eclipsingAstronomyAstronomy and AstrophysicsCoupling (probability)Orbital periodX-rays: binarieNeutron stareclipsing; stars: individual: MXB 1659-298; stars: neutron; X-rays: binaries; X-rays: stars [ephemerides; binaries]Space and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsephemerideAstrophysics - High Energy Astrophysical Phenomena
researchProduct

X-Ray Eclipse Time Delays in 4U2129+47

2007

4U 2129+47 was discovered in the early 80's and classified as an accretion disk corona source due to its broad and partial X-ray eclipses. The 5.24 hr binary orbital period was inferred from the X-ray and optical light curve modulation, implying a late K or M spectral type companion star. The source entered a low state in 1983, during which the optical modulation disappeared and an F8 IV star was revealed, suggesting that 4U 2129+47 might be part of a triple system. The nature of 4U 2129+47 has since been investigated, but no definitive conclusion has been reached. Here, we present timing and spectral analyses of two XMM-Newton observations of this source, carried out in May and June, 2005.…

Physicsaccretion disksAstrophysics (astro-ph)Binary numberbinaries: eclipsingFOS: Physical sciencesAstronomy and AstrophysicsX-rays: starsAstrophysicsAstrophysicsLight curveOrbital periodCoronastars: individual: 4U 2129+47stars: neutronaccretionSpace and Planetary ScienceOrbital motionModulation (music)Center of massEclipse
researchProduct